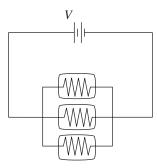

Chapter 7 Review Questions

Solutions can be found in Chapter 12.

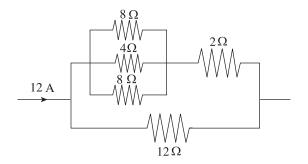
Section I: Multiple Choice

- 1. A wire made of brass and a wire made of silver have the same length, but the diameter of the brass wire is 4 times the diameter of the silver wire. The resistivity of brass is 5 times greater than the resistivity of silver. If $R_{\rm R}$ denotes the resistance of the brass wire and $R_{\rm S}$ denotes the resistance of the silver wire, which of the following is true?
 - (A) $R_{\rm B} = \frac{5}{16} R_{\rm S}$
 - (B) $R_{\rm B} = \frac{4}{5} R_{\rm S}$
 - (C) $R_{\rm B} = \frac{5}{4} R_{\rm S}$
 - (D) $R_{\rm B} = \frac{5}{2} R_{\rm S}$
- 2. For an ohmic conductor, doubling the voltage without changing the resistance will cause the current to
 - (A) decrease by a factor of 4
 - (B) decrease by a factor of 2
 - (C) increase by a factor of 2
 - (D) increase by a factor of 4
- 3. If a 60-watt light bulb operates at a voltage of 120 V, what is the resistance of the bulb?
 - (A) 2Ω
 - (B) 30Ω
 - (C) 240Ω
 - (D) 720Ω
- 4. A battery whose emf is 40 V has an internal resistance of 5 Ω . If this battery is connected to a 15 Ω resistor R, what will the voltage drop across R be?
 - (A) 10 V
 - (B) 30 V
 - (C) 40 V
 - (D) 50 V


5.

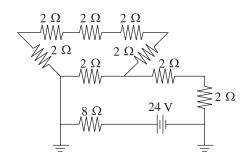
Determine the equivalent resistance between points a and b.

- (A) 0.25Ω
- (B) 0.333 Ω
- (C) 1.5Ω
- (D) 2 Ω


6.

Three identical light bulbs are connected to a source of emf, as shown in the diagram above. What will happen if the middle bulb burns out?

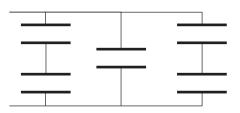
- (A) The light intensity of the other two bulbs will decrease (but they won't go out).
- (B) The light intensity of the other two bulbs will increase.
- (C) The light intensity of the other two bulbs will remain the same.
- (D) More current will be drawn from the source of


7.

What is the voltage drop across the 12 Ω resistor in the portion of the circuit shown above?

- (A) 24 V
- (B) 36 V
- (C) 48 V
- (D 72 V

8.

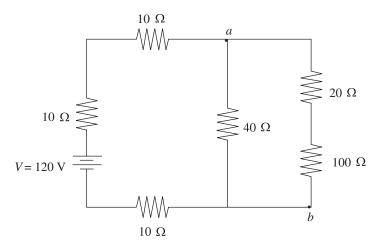


What is the current through the 8 Ω resistor in the circuit shown above?

- (A) 0.5 A
- (B) 1.0 A
- (C) 1.5 A
- (D) 3.0 A

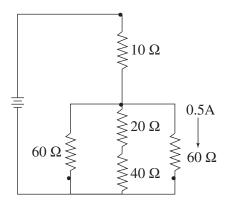
- 9. How much energy is dissipated as heat in 20 s by a 100Ω resistor that carries a current of 0.5 A?
 - (A) 50 J
 - (B) 100 J
 - (C) 250 J
 - (D) 500 J

10.



If each of the capacitors in the array shown above is *C*, what is the capacitance of the entire combination?

- (A) *C*/2
- (B) 2*C*/3
- (C) 5*C*/6
- (D) 2C


Section II: Free Response

1. Consider the following circuit:

- At what rate does the battery deliver energy to the circuit? (a)
- (b) Find the current through the 40 Ω resistor.
- (c) Determine the potential difference between points a and b.
 - At which of these two points is the potential higher?
- Find the energy dissipated by the $100\,\Omega$ resistor in $10\,s$. (d)
- (e) Given that the $100~\Omega$ resistor is a solid cylinder that's 4 cm long, composed of a material whose resistivity is $0.45 \Omega \cdot m$, determine its radius.

2. Consider the following circuit:

- What is the current through each resistor? (a)
- What is the potential difference across each resistor? (b)
- What is the equivalent resistance of the circuit? (c)